
Under Construction:
Components for Workgroups 1
by Bob Swart

Delphi offers the best support
around for a single program-

mer. The power, speed and flexi-
bility you can get from Delphi are
second to none. When it comes to
team-development using Delphi,
there are fewer success stories
known. What about Delphi for
workgroups?

In this first part of a two-part
series on components for work-
groups, we’ll explore Delphi com-
ponent management, using a
shared component library. The
next part will expand on that when
we move on to Delphi project
management using version control
systems.

Delphi For Workgroups
It’s not hard to imagine at least a
few problems that can surface
when several programmers are
working together on one project.
Even if the programmers in the
team make good solid rules on who
edits which file and when (to avoid
more than one programmer using
the same file at any given time),
there are synchronisation prob-
lems that can occur. Does every-
one have the same version of the
components for the project? And
what if one of them makes a change
in a component? Do all of them
need the same new source file? Not
if only the implementation has
changed, but it may be a problem
if the interface has also changed.
Without a good version control
system and a shared repository
(with all project source files stored
safely on the network, where they
can be shared among each other
with the version control system in
charge) it seems hard to even think
about Delphi workgroup develop-
ment. Yet, it is possible...

Component Management
Component management offers
support for the problem where

multiple programmers are using
the same component and all of
them need to use the same version
of the component. It can also be
used to enforce uniformity in the
components that are used amongst
the programmers in a team (for
example, if you want to prohibit the
use of a certain type of component,
like VBXs) and it will add to the
portability of your programmers
among the different working ma-
chines (a programmer should be
able to work on any machine, not
only on his/her personal worksta-
tion with only his/her settings and
component library).

To support component manage-
ment, we need someone to be the
component manager, plus a fileser-
ver with a shared directory every-
one in the team can read and a
shared COMPLIB.DCL component
library.

Shared Component Library
To start with the last two issues: a
shared COMPLIB.DCL should be
placed on the fileserver so every-
one that needs to use it can read it
(write permission is only needed
for the component manager – more
about this later). In order for
someone to use a component
library on the network, a setting in
the DELPHI.INI file in the Windows
directory needs to be changed.
Usually, the COMPLIB.DCL file is
taken from the C:\DELPHI\BIN
directory and we now want to take
if from the N:\DELPHI directory, for
example.

We can specify this when Delphi
is running with the Options | Open
Library dialog. It is easier, how-
ever, to just quit Delphi and modify
the ComponentLibrary entry in the
DELPHI.INI file, located in the
Windows directory. Modifying this
entry is not enough, however. We
need to update the SearchPath as
well to enable everyone to find the
correct versions of the .DCU files
(which then need to be stored on
the network as well). A DELPHI.INI
file that is prepared for shared
usage of the Component Library
and .DCU search path can be seen
in Listing 1 (note that the old
settings are just commented out,
so you can re-install them at any
time).

The advantages of this approach
are as follows:
➣ One component builder can

produce something and then all
the other developers are free to
use it (you don’t have to re-
invent the wheel). Furthermore,
people may have beneficial
comments and additions on
components they can see (com-
pared to components that only
exist on a single machine).

➣ Errors that are fixed in a compo-
nent are automatically shared
by all users of the component,
you only need to re-compile the
projects that are involved.

➣ If the components are properly
documented with on-line help
this will increase the speed of
use for these components, so in
the end everyone will know how

[Library]
;ComponentLibrary=C:\DELPHI\BIN\COMPLIB.DCL
ComponentLibrary=N:\DELPHI\COMPLIB.DCL

;SearchPath=C:\DELPHI\LIB
SearchPath=C:\DELPHI\LIB;N:\DELPHI\LIB

SaveLibrarySource=1

➤ Listing 1

30 The Delphi Magazine Issue 9

to use all jointly developed
components.

These advantages can lead to a real
team-effort component library that
will be more efficient, tested,
debugged and often better docu-
mented, compared to components
used by a single person only.

Of course, there are also some
potential problems associated
with a shared component library:
➣ If the COMPLIB.DCL file is in use

by even one (local) version of
Delphi, then it cannot be up-
dated with new components.
This means that the component
manager often only has a few
opportunities to install new, up-
dated versions of components
(like late at night). Of course, for
an important bug-fix a broad-
cast message on the network
that asks everyone to quit work-
ing with Delphi for one or two
minutes might be acceptable.

➣ Even if wheels don’t have to be
invented more than once, they
need to be documented in order
to make them roll for everyone.
And this documentation and on-
line help is best written by the
original component builder
(which might be a good reason
for some to keep components
for themselves after all).

➣ There has to be a back-up plan
for those occasions when the
fileserver is unavailable.

➣ Starting Delphi with a large
COMPLIB.DCL file on the net-
work takes a little longer than
working with a local component
library (about 10 seconds).

Component Builders
For component builders in the
team, there are a few potential
problems. For one, the component
builder cannot easily add a new
prototype component to the
shared COMPLIB.DCL to see how it
works, because the Component
Library file will be in (shared) use
most of the time. In practice, there
is a solution to this problem, which
involves some discipline from the
component builder. The compo-
nent builder could make a copy of
the shared COMPLIB.DCL file to the
local C:\DELPHI\BIN directory.
Now, with a local component

library, he is able to install the
prototype component again. Of
course, once the component works
(typically the same day), the com-
ponent builder should go to the
component manager and ‘check in’
his new component. Also, the diffi-
cult part for the component builder
would be to remove the local ver-
sion of the COMPLIB.DCL, give up
that freedom again, and go back to
the shared version of the compo-
nent library. Who knows, someone
might have fixed something during
that day which will be installed that
night as well, so if he didn’t go back
to the shared COMPLIB.DCL, the
component builder might actually
still use an outdated local version
tomorrow.

Component Manager
While this may seem a little hard
for component builders, it is actu-
ally the task of the component
manager to keep the component
builders happy. In my company, we
have more than a dozen Delphi pro-
grammers and we’ve just started to
use a shared COMPLIB.DCL on our
fileserver. Most Delphi program-
mers from our company are
component users and application

builders. Some of them are compo-
nent builders, about three or four
of them actually. Only these guys
will ever need to make local copies
of COMPLIB.DCL and install their
own components for test and
debug purposes. I trust them to
come to me (the component man-
ager) to report new components,
bug fixes etc. But it is my job to
make them happy with this new
way of component management
compared to their old way of work-
ing, when they didn’t need to care
about anything or anyone and
could just write any component
they needed themselves.

Other than that, it’s up to the
component manager to install new
or updated components and make
sure the shared COMPLIB.DCL is
always up-to-date and in tip-top
shape. For this, I actually wrote a
little script to automatically re-
compile COMPLIB.DPR for me and
generate a new Component Library
when I need it.

COMPLIB.DPR
Did you know that COMPLIB.DCL is
in fact nothing more or less than a
Dynamic Link Library with a .DCL
extension instead of a regular .DLL

library Complib;
{$S 32768}
uses
 StdReg,
 VBXReg,
 DBReg,
 SysReg,
 OLEReg,
 DDEReg,
 SampReg,
 DrBobReg,
 LibExpt,
 LibMain;
{$R C:\DELPHI\LIB\STDREG.DCR}
{$R C:\DELPHI\LIB\DBREG.DCR}
{$R C:\DELPHI\LIB\SYSREG.DCR}
{$R C:\DELPHI\LIB\OLEREG.DCR}
{$R C:\DELPHI\LIB\DDEREG.DCR}
{$R C:\DELPHI\LIB\SAMPREG.DCR}
{.$R N:\DELPHI\LIB\DRBOBREG.DCR}
exports
 InitLibrary name LibrarySignature resident,
 FaultHandler name FaultHandlerSignature resident;
begin
 RegisterModule(’StdReg’, StdReg.Register);
 RegisterModule(’VBXReg’, VBXReg.Register);
 RegisterModule(’DBReg’, DBReg.Register);
 RegisterModule(’SysReg’, SysReg.Register);
 RegisterModule(’OLEReg’, OLEReg.Register);
 RegisterModule(’DDEReg’, DDEReg.Register);
 RegisterModule(’SampReg’, SampReg.Register);
 RegisterModule(’DrBobReg’, DrBobReg.Register);
 RegisterModule(’LibExpt’, LibExpt.Register)
end.

➤ Listing 2

May 1996 The Delphi Magazine 31

extension? You can see this for
yourself if you set the Save Library
Source option in the Options |
Environment dialog (the same place
where you can check the library
path) – see Figure 1.

Now, when you re-compile your
COMPLIB.DCL with this option set
on, you’ll find a COMPLIB.DPR file
in your C:\DELPHI\BIN directory.
This file is the one that is generated
by Delphi and used to build a DLL
with internal name COMPLIB (so
Delphi can recognise it). You can
even rename COMPLIB.DCL to
something like DRBOB.DCL and
enter that file as your new compo-
nent library. As long as the original
source file to reproduce the DLL is
as in Listing 2, there should be no
problem.

The listing contains the defini-
tion of the default COMPLIB.DCL as
shipped with Delphi. However, I’ve
already added a unit of my own to
it, namely DrBobReg, and I called the
DrBobReg.Register procedure. I
could also have added a .DCR file
with component bitmaps, to group
them together instead of adding
them to the individual component
source files (more about this later).

Note that you can actually use
this source file to reconstruct
COMPLIB.DCL when it has become
corrupted or even disappeared
from your machine.

I once managed to crash it, tried
to rebuild it and ended up with an
empty component library and a
COMPLIB.DPR that only exported
the InitLibrary and FaultHandler
(no components were registered).
I could either have re-installed
COMPLIB.DCL from the Delphi CD,
or copy a backup of COMPLIB.DPR
and re-compile the component
library. The latter seemed to be the
easier solution and it worked like a
dream. So, instead of having a
backup copy of COMPLIB.DCL,
have a back-up copy of the
COMPLIB.DPR file, since you can
actually see from the source which
components were installed and
you can make your own changes if
you want as well.

DRBOBREG.PAS
But what about this extra DrBobReg
unit? What magic is hidden in this

single source file? Actually, this is
the single unit that I use to register
all my shared components. And be-
fore we go into the benefits of reg-
istering components in one big
unit, let’s first see what DrBobReg
actually looks like – Listing 3.

There are a few special things
about this unit. For one, it only reg-
isters the components, it does not
define them. The components
themselves are defined in their
own units, but they are registered

in this multi-component register
unit. Also, note the fact that I
include two .DCR files in this unit.
This means that I don’t need to
include them in the component
units themselves. Which means
that the component units will be
stripped of the register procedure
as well as the .DCR component
bitmap file. And since the
DRBOBREG.PAS file is only used to
construct COMPLIB.DCL, not the
final executable, this additional

unit DrBobReg;
interface
{ the .DCR files for some of the components that are installed: }
{$R TTT.DCR}
{$R TBUUCODE.DCR}
procedure Register;
implementation
uses DrBob, { TDrBob }
 Convert, { TConvert }
 TDosEnv, { TDosEnvironment }
 TTT, { TTicTacToe }
 TBUUCode, { TBUuEncode, TBUuDecode }
 FileName,
 PictEdit,
 SysUtils, DsgnIntf, Classes;
procedure Register;
begin
 { components }
 RegisterComponents(’Dr.Bob’, [TDrBob,
 TConvert,
 TDosEnvironment,
 TTicTacToe,
 TBUuEncode,
 TBUuDecode]);
 { property editors }
 RegisterPropertyEditor(TypeInfo(TFilename), nil,
 ’InputFile’, TFilenameProperty);
 PictEdit.Register
end {Register};
end.

➤ Listing 3

➤ Figure 1

32 The Delphi Magazine Issue 9

information is also stripped from
the final executable.

Another advantage is the fact
that when I move up to Delphi 2.0,
I only need to convert the .DCR files
and move this unit with the con-
verted .DCR files to the Delphi 2.0
LIB directory. I don’t have to mod-
ify the single component source
files at all (except when porting
issues arise, which will be dealt
with another time).

As a consequence of this ap-
proach, my component source
units do not need a register proce-
dure anymore. Which makes them
even smaller when linked into the
final executable. For example, take
a look at the TDrBob base class com-
ponent in Listing 4. Real short, eh?

The FAbout property of the
component base class is useful to
identify when a new version of a
certain component has been in-
stalled. Just override the Create
constructor of the new version and
put another string in the FAbout
property.

DRBOBC.ZIP
The DRBOBREG.PAS register unit
and DRBOB.PAS component are
part of a collection of components
and property editors that I’ve put
together for this issue’s disk as file
DRBOBC.ZIP (you can also find it at
http://www.pi.net/~drbob/). The
components include:

TDrBob
TConvert
TDosEnvironment
TTicTacToe
TBUuEncode & TBUuDecode

There’s also a TFileName and a new
TPicture/Image property editor,
plus ResConv, a DOS/Windows
command-line utility to convert
16-bit .RES or .DCR files (containing
bitmaps) to 32-bit .RES or .DCR files
– very handy for Delphi 2.

The installation of the compo-
nent collection is simple: just copy
all these files in this archive to a
single directory (for example
C:\DELPHI\DRBOB) and add the
file DRBOBREG.PAS to the list of
installed components (in the
Options | Install Components
dialog). Note that one install file is

enough, you don’t need to install
each component separately!

TDrBob is the ‘kernel’ component
from this collection: almost all the
others are derived from this one.

TConvert converts numerical val-
ues to hexadecimal and roman
digits (and back) using an internal
field and several conversion
routines (from Issue 1).

TDosEnvironment returns the DOS
environment strings in a property
of type TStringList.

TTicTacToe is the component for
the game also known as noughts-
and-crosses, based on a strategy
MAGIC.DLL (this is a new version!).
Make sure MAGIC.DLL is available
in your \WINDOWS\SYSTEM direc-
tory or the directory with the final
application. A first version was
included with Issue 2.

TBUuEncode and TBUuDecode are
wrapper components around my
UUCODE.DLL, which implements
the uuencode/uudecode algorithm
to en/decode a file which may con-
tain any character into a file with a
standard character set, so this file
can be sent over diverse networks

that do not support binary files
(such as the internet). For more
information about these compo-
nents, read the TBUUCODE.HLP
help file. Note that this component
has its own property editors
installed to give you as much sup-
port during design time as possible
(using the Activate property it is
even possible to actually encode
and decode files at design time)!

Dr.Bob’s Enhanced Picture
Editor is a replacement for the
Picture Editor which Borland pro-
vided with Delphi, which unfortu-
nately cannot give you a preview
when you are browsing through a
directory of .BMP files). When you
have installed DRBOBREG.PAS you
can find the new Picture Editor in,
for example, the following places:
TImage (picture), TBitBtn (glyph)
and TSpeedButton (glyph).

Shared Experts
A final advantage when sharing the
component library that I offered to
the Delphi programmers at my
company was the fact that they
could also share my collection of

unit DrBob;
interface
uses Classes;
Type
 TDrBob = class(TComponent)
 private
 { Private ’dummy’ field for read-only design property About... }
 Dummy: String;
 protected
 { Protected ’FAbout’ declarations }
 FAbout: String;
 public
 { Public class declarations (override) }
 constructor Create(AOwner: TComponent); override;
 published
 { Published About property }
 property About: String read FAbout write Dummy;
 end {TDrBob};
implementation
constructor TDrBob.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FAbout := ’TDrBob 1.0 (c) 1996 by Bob Swart (aka Dr.Bob - 100434,2072)’
end {Create};
end.

➤ Listing 4

[Experts]
ExptDemo=C:\DELPHI\BIN\EXPTDEMO.DLL
DrBob=N:\DELPHI\EXPERTS\DLL\DRBOB.DLL

[DrBob]
Delay=0

➤ Listing 5

34 The Delphi Magazine Issue 9

➤ Figure 2

Delphi 1.0 experts from the same
fileserver. The DELPHI.INI file was
again modified as shown in Listing
5 (the Delay entry is used to limit
the time the splash screen is shown
– it can be removed entirely for
registered users, by the way).

The disk with the last issue of the
Delphi Magazine already contained

the DRBOB1.ZIP file, with the
installation program and a free
(fully functional) trial version in-
cluded (you can also find it in
Library 22 of the DELPHI forum on
CompuServe and from my Web
site). You’ll get the Project Experts
in the Gallery which are shown in
Figure 2, for example.

Version Control System?
Sharing the same DRBOB.DLL ex-
pert DLL is nice but does not have
any additional benefits (compared
to using the DRBOB.DLL on a stand-
alone workstation). There is no
shared repository with files when
using these experts. For this we
need a true version control system,
one that is connected to a shared
database on the same fileserver.
I’ve built one myself, called
ViCiouS, which does exactly that
and can be used to enhance the
component management model
into a true project management
model. But this part of the Delphi
for Workgroups story is best left
for next time...

Bob Swart (aka Dr.Bob at
http://www.pi.net/~drbob/) is a
professional software developer
using Borland Delphi, C++ and
Pascal for Bolesian in The Nether-
lands, and a freelance technical
author for The Delphi Magazine.
In his spare time Bob likes to watch
video tapes of Star Trek Voyager
and Deep Space 9 with his 2-year
old son Erik Mark Pascal.

	Delphi for Workgroups
	Component Management
	Shared Component Library
	Component Builders
	Component Manager
	COMPLIB.DPR
	DRBOBREG.PAS
	DRBOBC.ZIP
	Shared Experts
	Version Control System?

